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ABSTRACT 

This paper analyses the spillover effect of CO2 

emissions and the marginal effect of Biomass energy 

consumption on CO2 emissions in Sub-Saharan 

Africa by applying the extended Stochastic Impacts 

by Regression on Population, Affluence, and 

Technology (STIRPAT) model together with the 

spatial econometric models. The likelihood ratio test 

and Wald test indicated that the Spatial Durbin 

Model was the most suitable model to explain the 

elasticities of the exogenous variables. Furthermore, 

the Hausman test performed revealed that the fixed-

effects model was more adept than the random-

effects model. The findings suggested that increasing 

biomass energy consumption in a local country turns 

to reduce the country’s own CO2 emissions and also 

reduces the CO2 emissions of its adjacent countries 

by 0.089% and 0.022% respectively. Whereas an 

increment in trade openness in a country pollutes its 

environment and that of its neighboring states by 

0.163% and 0.035% respectively. Comparing the 

indirect effect of the employed exogenous variables, 

foreign direct investment exerted a heavier weight 

impact than the others. Overall the study spotlighted 

some policies suggestions for the Sub-Saharan Africa 

states’ energy market in the cause of controlling the 

emissions of CO2. 

Keywords: Trade openness, Biomass energy, 

Carbon-neutral, Environment, Africa. 

 

I. INTRODUCTION 
Carbon dioxide (CO2) levels in the 

atmosphere have risen from 19,809 to 33,431 million 

tons in the last decades, reaching it’s greatest level in 

recorded history (Dudley, 2018), posing health risks 

to human survival and other forms of life. CO2 

emissions account for more than 76% of greenhouse 

gas (GHG) emissions and are responsible for climate 

change and global warming (Abban et al., 2020; 

Khan, 2021). Studies on energy consumption that 

results in CO2 emissions, notably from fossil fuels as 

an energy source, are hotly contented (Bakke, 2021). 

As a result, preventing pollution and climate change 

has become a priority, leading to the demand for 

clean energy to reduce rising environmental 

contamination (Alola et al., 2021; Carley & Konisky, 

2020). The most effective methods for tackling 

escalating environmental concerns are the creation 

and utilization of clean energy sources such as bio-

energy and other renewable energies. By altering the 

pattern of energy consumption and production, 

biomass energy usage and development may be the 

cornerstone of a sustainable energy system that may 

efficaciously conduce to economic growth while also 

strengthening environmental auspices (Sulaiman & 

Abdul-Rahim, 2020).  

 Biomass energy, as a component of 

renewable energy, occupies a prominent position in 

global discussions about energy strategies and policy 

for long-term development (Ajmi & Inglesi-Lotz, 

2020). Biomass energy meets approximately 35% of 

the energy needs of several developing countries, 

bringing global consumption to 13% (Ulucak, 2020). 

There are three kinds of biomass energy; (a) animal 

waste which is obtained from animal husbandry; (b) 

non-woody biomass energy is obtained from residues 

mainly residential waste such as food detritus and 

sewage; bagasse, husks, sawdust, and nutshells; (c) 

non-woody biomass which is created in crop residues 

such as plants stem, leaves and straw (Abdulyekeen 

et al., 2021). Biomass energy could be utilized for 

heat and energy generation, transportation fuel, and 

chemical manufacturing, both indirectly and directly. 

Direct biomass energy usage, involves combustion 

for cooking, heating, and industrial processes, while 

indirect usage involves the conversion of biomass 
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into secondary energy consumption (All sources of 

energy that result from the transformation of primary 

sources) (Zhang et al., 2020). To sustain future 

economic development, the world requires an 

enormous quantity of energy Millward-Hopkins et al. 

(2020), and bio-energy has the potential to address 

environmental issues such as air pollution, climate 

change, acidic rain, and global warming by reducing 

CO2 emissions and other pollutant gas emissions 

(Gao & Zhang, 2021; Zafar et al., 2021).  

  By meeting Africa’s expanding energy 

demand, biomass is predicted to become one of the 

key domestic energy sources (Sulaiman & Abdul-

Rahim, 2020). Bio-energy is the principal source of 

energy for approximately 2.7 billion people globally, 

accounting for approximately 40% of the total energy 

supply, particularly in SSA. This share is much 

higher than most developing countries and it is 

expected to expand in the coming decades (Nyika et 

al., 2020). Since access to energy, particularly 

renewable energy, is critical for SSA, which is 

experiencing economic development and progress in 

human development, sustainable energy (Biomass) is 

the measure to replace the heavy dependency on 

fossil fuels (Gyamfi et al., 2021; Wang et al., 2020). 

Increased CO2 emissions from increasing energy 

usage (fossil fuels) to support rapid economic 

expansion has been a key policy issue in SSA 

(Karnauskas et al., 2020). The process of producing 

national output appears to be linked to extremely 

high CO2 emissions in SSA. For example, the 

average per capita income in SSA climbed modestly 

from $655 in 1990 to $1,597 in 2018. However, the 

average CO2 emission in SSA increased by 32.29% 

from 13,665.48 metric tons to 24,636.55 metric tons 

over the same period (Author’s computation). In light 

of the foregoing, the relationship between biomass 

energy consumption and CO2 in SSA must be 

investigated in order to guide policies for long-term 

growth and development.  

  Due to the influence of composition, scale, 

technique, trade openness can have either positive or 

negative effects on environmental pollution 

(Mutascu, 2018). Mahmood et al. (2019) revealed 

that the impact of trade openness on environmental 

pollution is through economic growth, as the scale 

effect of energy consumption grows. It reveals that 

economic growth has a negative environmental 

impact at the early stages of development, however, 

due to the effect of technique and/or composition, it 

may have a favorable environmental influence later 

on (Ansari et al., 2020). Since more focus is placed 

on economic growth rather than pollution ascendance 

at the beginning of a development process, the scale 

effect shows that pollution is increasing due to larger 

economic activity and energy consumption. If the 

scale effect of trade openness is determined to be 

dominant over the composition/technique effect, a 

net negative environmental effect is expected; in the 

opposite case, net positive environmental benefits are 

expected (Mahmood et al., 2019). Furthermore, trade 

openness might have asymmetrical effects on 

pollutant emissions, because rising trade openness 

does not always have the same sign and magnitude as 

decreasing trade openness. Rahman et al. (2020) 

posit that rising trade openness leads to increased 

energy consumption and pollution as a country’s 

affluence rises. According to this reasoning, 

increasing and decreasing trade openness will have 

an unseen effect on environmental pollution.  

 The majority of the studies cited above 

focused on the causal association between CO2 

emissions, trade openness, and biomass energy in the 

presence of other variables. This research adds to the 

body of knowledge in two ways: first, unlike prior 

Sub-Saharan African studies, this study unveiled the 

spillover effect of  CO2 emissions in the region.It is 

general knowledge that sovereign nations with land 

border constraints can nonetheless interact spatially 

freely.Validating the spatial dependence of CO2 

emissions informs critical policy decisions in 

international organizations focused on CO2 

emissions, hence this research is vital. Secondly, this 

study uncovered both direct and indirect effects of 

the exogenous variables, which is essential for 

integrated policy options on sustainable development 

in SSA. By understanding the direct and indirect 

effects of the exogenous variables on CO2 emissions, 

this study can assist governments in mitigating CO2 

emissions across the region.  

 

II. METHODOLOGY 
2.1 Model Specification 

CO2 emissions have been studied 

extensively from a variety of perspectives as a 

worldwide issue. The STRIPAT model is one of the 

often used tools for analyzing the impact of 

anthropogenic causes on air pollution indicators such 

as CO2 emissions. According to literature, Ehrlich 

and Holdren (1971) were the first to explain the 

IPAT identity, also known as I = PF, which was the 

first to demonstrate the relationship between 

environment and population. Where I =  stands for 

environmental influence, P for population size, and F 

for a function that calculates the effect of per capita. 

In 1972, the IPAT identity became well-known 

courtesy of Ehrlich and Holdren (1972) as;  

I = PAT 
     (1) 
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Where A  represents affluence and T  for 

technology. Several IPAT identity reforms have been 

carried out, by introducing additional elements, for 

example (Schulze, 2002; Waggoner & Ausubel, 

2002). Because it is only an identity, the IPAT 

identity and all its reformulations were regarded as 

overly simplistic because it does not account for non- 

prepositional modification or hypothesis testing in 

human indicators. To address these problems, Dietz 

and Rosa (1994) proposed recasting the IPAT model 

as STIRPAT, this allows for random errors in 

parameter estimation and provide a testable model 

for estimating the effects of anthropogenic causes on 

CO2 and other emissions. The model was 

reformulated as follow;  

I = αPβAγTδε 
      (2) 

In applying the natural logarithm to the above 

equation, we obtained  

Ln I = α + βLn P + γLn A + δLn(T) 
 

      (3) 

Where β, γ and δ  are considered as 

elasticities for population, affluence, and technology, 

α for the constant term and ε for the error term. Thus, 

the coefficient from the STIRPAT model would be 

less than 1, which is a key distinction between IPAT 

and STIRPAT models. The extended STIRPAT 

model was constructed with Affluence measured by 

GDP per capita (GDP), energy intensity (INT) used 

as a proxy for technology, biomass energy (BMS) 

measured by Biomass consumption per capita (in 

kilogram), trade openness (TOP) measured by Export 

of goods and services + import of goods and services 

(% of GDP), foreign direct investment (FDI) 

measured by Foreign direct investment (net inflows), 

and population (POP) measured by Population 

(total), 

 

and CO2 is CO2 emissions (kt). As a result, the empirical model for the study is given as;  

 

LnCO2it = α + β1LnGDPit + β2LnBMSit + β3LnTOPit + β4LnFDIit + β5LnPOPit + β6LnINTit + εit  
        (4) 

β1 − β6 are the unknown parameters to be estimated and ε represents the standard error term. Thus, the fixed 

effects from the spatial panel model become; 

LnCO2i,t = αi + ρ Wij LnCOi,t

N

j=1

+ β1LnGDPi ,t + β2LnBMSi,t + β3LnTOPi ,t + β4LnFDIi,t + β5LnPOPi ,t

+ β5LnINTi ,t + γ1  Wij LnGDPi ,t

N

j=1

+ γ2  Wij LnBMSi ,t

N

j=1

+ γ3  Wij LnTOPi ,t

N

j=1

+ γ4  Wij LnFDIi,t

N

j=1

+ γ5  Wij LnPOPi ,t

N

j=1

+ γ5  Wij LnINTi ,t

N

j=1

+ πit  

              (5) 

πit = ϑ Wijτit

N

j=1

+ eit  

Thus, the model in Eq. 5 comprises three spatial impacts characteristics; 

(α) endogenous spatial impacts; 

 

 Wij LnCO2i,t

N

j=1

 

(β) exogenous spatial impacts; 

 

 Wij LnGDPi ,t

N

j=1

,  Wij LnBMSi ,t

N

j=1

,  Wij LnTOPi ,t

N

j=1

,  Wij LnFDIi,t

N

j=1

,  Wij LnPOPi ,t

N

j=1

,  Wij LnINTi ,t

N

j=1

 

and,  

(γ) residual spatial impacts; 
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ϑ Wijτit

N

j=1

 

 

 

 

2.2 Spatial correlation test 

The Moran I’s index was used to determine 

the global spatial auto correlation along West African 

countries. The index is a regularly used metric for 

determining the degree of geographical clustering of 

the attributes of the employed variables. As stated by 

Moran (1950), the indicator can be calculated as; 

 

Moran′𝑠 𝐼 =
𝑛   𝑊𝑖𝑗

𝐴𝑛
𝑗=1  𝑥𝑖 − 𝑥  𝑛

𝑖=1 (𝑥𝑗 − 𝑥 )

(  𝑊𝑖𝑗
𝐴𝑛

𝑗=1
𝑛
𝑖=1 ) ×  (𝑥𝑖 − 𝑥 )2𝑛

𝑖

 

     

     

  (6) 

Where 𝑛  represent the number of spatial 

units indicated by 𝑖 and 𝑗. 𝑥 is the variable of interest, 

the average of 𝑥 is given by 𝑥 , the (𝑛 × 𝑛) weight 

matrix indicating the interrelation between a variable 

and its surrounding is given by  𝑊𝑖𝑗
𝐴. Generally, the 

Moran I’s index is evaluated by the 𝑍-score, which is 

calculated as; 

𝑍 =
𝐼 − 𝐸(𝐼)

 𝑣𝑎𝑟(𝐼)
 

     (7) 

 Where the expectation of the index is given 

by 𝐸(𝐼) ; the variance of the index is given by 

𝑣𝑎𝑟(𝐼).  In effect, the Moran’s I index varies from 

−1 𝑡𝑜 + 1 indicating negatively or positively spatial 

auto correlation. Furthermore, the Local indicators of 

spatial association (LISA) which are also used to 

assess the degree of association between a country 

and its surroundings is calculated by the expression;   

𝐼𝑖 = 𝑍𝑖
′ =  𝑊𝑖𝑗𝑍𝑗

′

𝑛

𝑖

 

     

     

 (8) 

Where 𝑍𝑖  is the standardized form of the 

variable 𝑥𝑖 and spatial weight matrix is given by 𝑊𝑖𝑗 . 

A negative or positive LISA coefficient, on the other 

hand, suggests surrounding features with differing or 

similar attribute values. The LISA coefficients 

(Spatial distribution) could be visualized in 

illustrating the clusters of low-low values (L-L), 

high-high values (H-H), and outliers such as low-

high (L-H) and high-low (H-L). The queen contiguity 

was used to define the relationship among a country 

and its neighbors as a spatial unit that shares a 

common vertex.     

 

2.4. Spatial econometric models 

 In working with spatial interaction and 

spillover effects among spatial units, the spatial 

regression model (SRM) outperforms the ordinary 

least square (OLS) regression in terms of providing 

in-depth information on spatial correlations between 

the variables while explicitly accounting for 

geographical impacts. The SRM includes three basic 

models; the spatial Durbin model (SDM), the spatial 

lag model (SLM), and the spatial error model (SEM). 

The spatial auto-regressive process which 

incorporates both explanatory and response variables 

in the SDM model can be constructed as (Elhorst, 

2014; Sun et al., 2019) 

 

  

𝑌𝑖𝑡 = 𝛽𝑋𝑖𝑡 + 𝜌𝑊𝑌𝑖𝑡 + 𝛿𝑊𝑋𝑖𝑡 + 휀𝑖𝑡
𝑌𝑖𝑡 = 𝛽𝑋𝑖𝑡 + 𝜌𝑊𝑌𝑖𝑡 + 𝛿𝑊𝑋𝑖𝑡 + 𝑢𝑖 + 휀𝑖𝑡
𝑌𝑖𝑡 = 𝛽𝑋𝑖𝑡 + 𝜌𝑊𝑌𝑖𝑡 + 𝛿𝑊𝑋𝑖𝑡 + 𝑣𝑖 + 휀𝑖𝑡

𝑌𝑖𝑡 = 𝛽𝑋𝑖𝑡 + 𝜌𝑊𝑌𝑖𝑡 + 𝛿𝑊𝑋𝑖𝑡 + 𝑢𝑖 + 𝑣𝑖 + 휀𝑖𝑡

   

     

     

  (9) 

Whereas the spatially auto regressive process (W) is 

incorporated into the explanatory variables in the 

spatial lag models (SLM) (Elhorst, 2014; Liu et al., 

2018). Thus, the SLM models can be defined as;  

 

  

𝑌𝑖𝑡 = 𝛽𝑋𝑖𝑡 + 𝜌𝑊𝑌𝑖𝑡 + 휀𝑖𝑡
𝑌𝑖𝑡 = 𝛽𝑋𝑖𝑡 + 𝜌𝑊𝑌𝑖𝑡 + 𝑢𝑖 + 휀𝑖𝑡
𝑌𝑖𝑡 = 𝛽𝑋𝑖𝑡 + 𝜌𝑊𝑌𝑖𝑡 + 𝑣𝑖 + 휀𝑖𝑡

𝑌𝑖𝑡 = 𝛽𝑋𝑖𝑡 + 𝜌𝑊𝑌𝑖𝑡 + 𝑢𝑖 + 𝑣𝑖 + 휀𝑖𝑡

   

     

     

 (10) 

Lastly, the spatial auto regression process 

error term denoted by ∅,whereas the auto correlation 

error term’s spatial influence is given by 𝜆  are 

incorporated into the SEM models as noted by You 

and Lv (2018), thus, it was constructed as; 

 

  

𝑌𝑖𝑡 = 𝛽𝑋𝑖𝑡 + 𝜆𝑊∅ + 휀𝑖𝑡
𝑌𝑖𝑡 = 𝛽𝑋𝑖𝑡 + 𝜆𝑊∅ + 𝑢𝑖 + 휀𝑖𝑡
𝑌𝑖𝑡 = 𝛽𝑋𝑖𝑡 + 𝜆𝑊∅ + 𝑣𝑖 + 휀𝑖𝑡

𝑌𝑖𝑡 = 𝛽𝑋𝑖𝑡 + 𝜆𝑊∅ + 𝑢𝑖 + 𝑣𝑖 + 휀𝑖𝑡

   

     

     

 (11) 

  To select the appropriate model for the 

study, the Lagrange multiplier (LM) diagnostic tests 
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would be employed. The LM diagnostics provides 

four (4) statistic tests; that is LM error, robust LM 

error, LM lag, and robust LM lag.  Furthermore, the 

log-likelihood approach, Schwartz criterion (SC), 

and the Akaike information criterion (AIC) would be 

used to compare the models to aid in selecting the 

best model. 

 

III. EXPLORATORY DATA ANALYSIS 
3.1. Data and Descriptive statistics 

The study used a balanced data from 29 

Sub-African countries from 1995 to 2017 to reveal 

the influencing factors of CO2 emissions and the 

spatial effect of CO2 emissions in the region. All data 

except for the biomass energy data were extracted 

from the World Bank database. The biomass energy 

data was incurred from the global material flow 

database. The natural logarithm was applied to the 

variables to explicate the estimates as elasticities. 

The descriptive statistics for the transformed 

variables are presented in Table 1. The distribution of 

CO2 emissions and the range of biomass energy 

consumption and trade openness in Sub-Saharan 

Africa countries are rendered in Figure 1, Figure 2, 

and Figure 3 respectively for the years 1995 and 

2017. 

 

Table 1: Descriptive statistics 

 LnCO2 LnGDP LnBMS LnTOP LnFDI LnPOP LnINT 

Mean 8.058 6.806 7.321 15.552 18.803 16.012 21.593 

Std.Dev 1.506 0.051 1.132 1.078 2.126 1.259 1.796 

Min 5.010 4.630 4.755 13.270 9.344 13.739 18.096 

Max 13.012 9.288 9.334 18.278 23.014 19.067 27.739 

Skewness 1.030 0.434 -3.047 0.118 -1.055 -0.028 1.021 

Kurtosis 4.889 2.431 1.595 2.348 5.221 2.301 4.632 

Jarque-Bera 221.595 30.552 89.517 13.879 265.978 16.916 1469.331 

Probability 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Observations 680 680 680 680 680 680 680 
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FIGURE 1: CO2 emissions in Sub-Saharan Africa for the years 1995 and 2017 
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FIGURE 2: Biomass energy consumption in Sub-Saharan Africa for the years 1995 and 2017. 
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FIGURE 3: Trade openness in Sub-Saharan Africa for the years 1995 and 2017. 

 

3.2. Correlation test and Cross-section 

dependence test  

  With regards to the relationship among the 

exogenous variables, it could be inferred from Figure 

4 that there is no substantial association between the 

independent variables since the coefficient of 

correlation among the variables are less than 0.7. In 

conclusion, each of the explanatory variable 

influence the dependent variable in a unique way. 

Econometrically, it was vital to check the stationarity 

of the employed variables. Thus, the second 

generations panel unit root tests (CIPS and CADF), 

indicated that the variables were I (0) at level, but 

they turned to I (1) after the first difference as 

presented in Table 2.  

 

Table 2:  Unit root test of the employed variables 

 CIPS  CADF  

 Levels  First 

difference 

 Levels  First 

difference 

 

Variab

le 

Const

ant  

Co

nst

ant 

&T

ren

d  

Inf. Const 

ant 

Consta

nt 

&Tren

d 

Inf. Con

stant 

Const

ant 

&Tre

nd 

Inf. Const 

ant 

Consta

nt 

&Tren

d 

Inf. 

LnCO2 -

1.033         

-

1.2

77 

I (0) -

3.611
a
 

-5.221
a
 I (1) -

1.15

5 

-1.234 I (0) -

5.133
a
 

-

5.301
a
 

I (1) 

LnGD

P 

-

1.153 

-

1.2

31 

I (0) -

3.755
a
 

-4.638
a
 I (1) -

1.13

7 

-1.203 I (0) -

4.997
a
 

-

5.215
a
 

I (1) 

LnBM

S 

-

1.420 

-

1.3

I (0) -

3.876

-4.977
a
 I (1) -

1.28

-1.401 I (0) -

4.891

-

4.994
a
 

I (1) 
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37 a
 5 a

 

LnTO

P 

-

1.311 

-

1.4

33 

I (0) -

4.133
a
 

-5.338
a
 I (1) -

1.12

9 

-1.371 I (0) -

5.017
a
 

-

5.273
a
 

I (1) 

LnFDI -

1.044 

-

1.2

21 

I (0) -

5.041
a
 

-5.171
a
 I (1) -

1.41

0 

-1.149 I (0) -

4.942
a
 

-

5.319
a
 

I (1) 

LnPO

P 

-

1.214 

-

1.4

03 

I (0) -

4.828
a
 

-4.888
a
 I (1) -

1.06

6 

-1.364 I (0) -

5.045
a
 

-

5.034
a
 

I (1) 

LnINT -

1.076 

-

1.5

52 

I (0) -

4.977
a
 

-5.013
a
 I (1) -

1.28

1 

-1.425 I (0) -

5.411
a
 

-

5.223
a
 

I (1) 

Note: 
a, b, c

indicates 1%, 5% and 10% statistical significance levels, respectively 

 

 
FIGURE 4: Corroplot of the employed variables 

 

IV. EMPIRICAL RESULTS AND 

DISCUSSION 
3.3. The Spatial auto correlation averment 

Before unveiling the spillover effect of the 

dependent variable and effect exogenous variables, it 

was vital to appraise whether there is a possibility of 

spatial auto correlation of Ln𝐶𝑂2 among a country 

and its neighboring states. This was done by using 

the Local Indicators of Spatial Association (LISA) 

analytical tool and the Moran’s I assessment. It was 

observed from the LISA map (Figure 5) that Nigeria 

and South Africa observed a High-High pattern (H-

H) local spatial agglomeration impact. For the 

selected years (1995, 2002, 2010, and 2017), 

countries like Ghana, cote d'Ivoire, Cameroun, 

Gabon, Congo Rep, Sudan, Kenya, Senegal, 
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Botswana, and Zimbabwe were seen to have a High-

Low pattern (H-L). For Low-High (L-H) local spatial 

agglomeration impacts countries Mauritania, DR 

Congo, Zambia, Namibia, Uganda, Malawi, 

Mozambique, Eswatini, and Togo.  Benin, Rwanda, 

Burundi,  and Niger were seen to have a Low-Low 

(L-L) local spatial agglomeration impact. Table 3 

indicated that the Moran’I values were also 

statistically significant. Consequently, Moran’s plots 

for the years 1995, 2002, 2010, and 2017 were also 

assessed as shown in Figure 6 to further explore the 

spatial auto correlation. 

 

Table 3: Moran’ I statistics for CO2 emissions 

Note: 
a, b, c

indicates 1%, 5% and 10% statistical significance levels, respectively. 

 

 

Year Moran Z-value p-

value 

Year Moran Z-value p-value 

1995 0.211
a
 2.455 0.000 2007 0.272

a
 3.213 0.000 

1996 0.208
a
 2.511 0.000 2008 0.288

a
 3.016 0.000 

1997 0.217
a
 3.127 0.000 2009 0.304

a
 3.455 0.000 

1998 0.220
a
 3.031 0.000 2010 0.313

a
 2.889 0.000 

1999 0.209
a
 3.110 0.000 2011 0.320

a
 2.991 0.000 

2000 0.238
a
 2.520 0.000 2012 0.347

a
 3.044 0.000 

2001 0.240
a
 3.447 0.000 2013 0.352

b
 3.015 0.000 

2002 0.243
a
 2.632 0.000 2014 0.373

a
 2.770 0.000 

2003 0.237
b
 3.118 0.000 2015 0.407

b
 3.300 0.000 

2004 0.250
a
 2.811 0.000 2016 0.414

c
 2.761 0.000 

2005 0.252
c
 2.718 0.000 2017 0.421

a 
 3.034 0.000 

2006 0.266
a
 2.891 0.000     
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FIGURE 5: LISA maps for the Sub-Saharan Africa in 1995, 2002, 2010, and 2017 
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FIGURE 6: Moran’ I plot for Sub-Saharan Africa in 1995, 2002, 2010, and 2017 
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3.4. Non-Spatial panel model  

  The study used a non-spatial panel model 

to investigate whether there was any spatial 

dependency across spatial units by employing the 

traditional Lagrange multiplier test. From this test, 

the non-spatial analysis was rejected. The rejection of 

the non-spatial models indicates that the spatial 

model must be used to capture the spatiality via the 

techniques described in section 2.4. Table 5 displays 

the non-spatial outcomes. The LM and its robust tests 

were used to investigate the geographical 

dependency variable. The results show that the 

spatial model is supported by all four categories of 

fixed effects at a 1% significance level. As a result, 

the findings disprove the premise that there is no 

geographical reliance, demonstrating the presence of 

spatial correlation.   

 

Table 4: Non-Spatial panel model 

Deteminants Pooled OLS Spatial-fixed 

effects 

Time-fixed 

effects 

Spatial and 

time-fixed effects 

Constant 0.131b
 − − − 

LnGDP 0.274b
 0.095a

 0.137b
 0.122c

 

LnBMS −0.257c
 −0.310c −0.221 −0.271 

LnTOP 0.422c
 0.344c 0.154b 0.188c

 

LnFDI 0.270c
 0.231b

 0.233c
 0.115 

LnPOP 0.311b
 0.232 0.291b

 0.204a
 

LnINT −0.298a
 −0.177b −0.277c

 −0.156 

𝝈𝟐 0.017 0.073 0.024 0.039 

𝑹𝟐 8.051 6.417 6.891 7.237 

Adjusted 𝑹𝟐 7.754 6.277 6.118 7.032 

Log-likelihood 21.114 18.037 15.631 23.221 

LM spatial lag 47.431 (0.000) 29.050(0.000) 31.331(0.000) 40.211(0.000) 

Robust LM 

spatial lag 

30.141 (0.000) 22.722(0.000) 19.789(0.000) 29.177(0.000) 

LM spatial 

error 

12.022 (0.000) 10.277(0.000) 7.439(0.000) 11.713(0.000) 

Robust LM 

spatial error 

9.553(0.000) 6.339(0.000) 6.221 (0.000) 8.551(0.000) 

The joint test of 

significance  

LM 

Fixed effects Statistics P-value  

Spatial fixed 144.179 0.000  

 Time fixed 111.885 0.000  

Note: 
a, b, c

indicates 1%, 5%, and 10% statistical significance levels, respectively. 

 

3.5. Spatial Durbin model 

The selection of the best model (SAR, 

SDM, or SEM) for the study was done by relying on 

the LR test and Wald test. The Wald test (66.32,
𝑃 = 0.000) indicates that the SDM model is better 

suited to the SAR model at a 1% significance. 

Similarly, the LR test (47.54,𝑃 = 0.000), rejects the 

appropriateness of the SEM model, leading to the 

conclusion that the SDM model is more convenient. 

The Hausman test was also performed to ascertain 

the best model between the random effects and the 

fixed effects. Table 6, indicates that at a 1% 

significance level, with the Hausman test 

(133.73,𝑃 = 0.000), the fixed-effect model is more 

appropriate in explaining the estimates. From Table 

6, it could be seen that with a 0.8113goodness-of-fit 

and a log-likelihood value (177.411) , the spatial 

fixed effect model (first column) surmount the other 

models. As a result, the interpretations will be 

restricted to their coefficients. The estimate of the 

spatial lagged component of the dependent variable 

was substantial and positive, showing that 

𝐶𝑂2emissions from neighboring states had a positive 

impact on a country’s 𝐶𝑂2emissions. The spatial auto 

correlation LR test in Table 4 and Moran I’s plots 

support this conclusion. The estimates revealed that a 

percentage rise in an average 𝐶𝑂2 emissions of the 

surrounding countries cause an increase of 0.137% 

in the focal country’s environment. The estimates for 

the explanatory variables from the SDM model can’t 

be stated as the marginal effects because of the 

geographical auto correlation, and thus can’t 

adequately reflect the spatial spillover impact of the 

employed variables. The study thus, went on to 

estimate the indirect, direct, and total effects to 
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quantify the impact of the explanatory variables and their spillover on CO2 emissions.  

 

Table 5: Spatial Durbin model 

Deteminants Spatial-fixed 

effects  

Time-period 

fixed effects 

Spatial and 

time-fixed 

effects 

Time-period 

random effects 

Spatial and 

time- 

random 

effects 

W* LnCO2 0.137a
 0.198a

 0.277b
  0.104a

 

LnGDP 0.223b
 0.211a

 −0.192 −0.083 0.051b
 

LnBMS −0.208 −0.287a
 −0.101c

 −0.233a
 −0.142 

LnTOP 0.357b
 0.155 0.078 0.177 0.121b

 

LnFDI 0.223c
 0.200 0.199b

 0.212a
 0.179a

 

LnPOP 0.240c
 0.193c

 0.137c
 −0.172 0.205 

LnINT −0.233c
 −0.221 −0.133c

 −0.153c
 −0.173 

W*LnGDP 0.106c
 0.176b

 0.082 0.109 −0.132c
 

W*LnBMS −0.211a
 0.205c

 0.110 0.088a
 0.188

a
 

W*LnTOP 0.233b
 0.100 0.214a

 0.222a
 −0.115a

 

W*LnFDI 0.261b
 0.213c

 0.427 0.117c
 0.077c

 

W*LnPOP 0.109b
 0.079c

 0.108 0.277c
 0.201c

 

W*LnINT −0.144a
 −0.201 −0.208c

 −0.139a
 −0.166a

 

ς2 0.0041a
 0.0078a

 0.0052a
 0.0017a

 0.0027a
 

R2 0.8113 0.5589 0.4761 0.4077 0.6121 

Log-

likelihood 
177.411 78.703 112.881 66.031 74.871 

 Diagnotic tests Statitiscs P-value  

 Hausman test                                           133.73 0.000  

 Wald test spatial lag                                 66. 32 0.000  

 LR test spatial error                                  27. 54 0.000  

Note: 
a, b, c

indicates 1%, 5% and 10% statistical significance levels, respectively. 

 

3.6. The estimates of direct, indirect, and total 

effects of the SDM model 

 The decomposition of the direct and 

indirect effects from the SDM is shown in Table 6. 

The SDM’s direct and indirect effects are extremely 

close to the matching of the spatial fixed effects. The 

existing variance in values, on the other hand, is 

owing to the existence of feedback effects that 

emanate from neighboring countries.  This is 

contained in two parts (a) (ρ W ∗ CO2 ), and (b) 

( Wit Xitγ). 

In reference to Table 6, a 1% increase in 

BMS has the possibility of reducing a country’s 

environmental pollution by 0.089% (direct effect), 

while a 1% increase of BMS in neighboring countries 

turns to reduce CO2 emissions by 0.022% in a focal 

country. Thus, in total, a country reduces emissions 

of CO2 in the whole of Sub-Sahara Africa region by 

0.111% by the usage of BMS. The negative 

association between CO2 emissions and BMS 

observed indicates that BMS improves the quality of 

air in the atmosphere in Sub-Saharan African 

countries. This implies that the affectation of 

advanced biomass conversion technologies would 

lessen the emissions of pollutants in the region. As a 

result, by shifting energy demand away from 

traditional energy sources, BMS would transform 

decarbonized economies through pollution reduction. 

The quality of the environment would be achieved by 

lowering fossil fuel usage, as well as its associated 

emissions that come with it. Since the production of 

BMS is a cost-effective one, it motivates the 

investment into BMS because increased economic 

growth creates opportunities. As a result, BMS can 

help societies tackle climate change and global 

warming, while simultaneously ensuring a country’s 

energy security. BMS asseverates a low-carbon 

development paradigm that is linked to effective 

pollution control measures. These findings disclosed 

that biomass energy help regulate pollution in the 

region. This observation collaborates with the study 

done by Magazzino et al. (2021) in Germany, where 

they revealed that biofuel has a negative effect on 

CO2 emissions by using machine learning 

algorithms. In the similar way, the work done by 

Sulaiman and Abdul-Rahim (2020) affirmed the 

negative effect of biomass energy on CO2 emissions 

in Africa. 

The elasticity of TOP exerted on CO2 

emissions from both the direct and indirect effects 
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was identified to be positive and statistically 

significant. More specifically, a 1% increment in 

TOP in a focal country has the possibility of 

increasing CO2 emissions by 0.163% in its own 

atmosphere, while a percentage increase of TOP in a 

neighboring state turns to increase pollution by 

0.035%. The possible inference that could be made 

on the positive impact of TOP on CO2 emissions is 

that free trade among the African countries has 

positive environmental outcomes due to the 

technique, effects of scale, and composition. This 

free trade has helped expand the trading partners of 

the economies both close and far geographically. 

Generally, trade has a positive impact on the 

environment through economic growth. Due to the 

scale effect of enhancing energy consumption, 

economic growth usually has a positive effect on the 

environment at the betimes stages of 

development.Since more focus is directed on 

economic growth instead of pollution control in the 

early stages of development, the scale effect shows 

that pollutants emissions are rising as a result of 

increasing energy usage and economic activity. Thus, 

for the total effect, a unit increase of TOP in a 

country pollutes its whole region by 0.198%. These 

findings indicate that heightening a country’s own 

TOP increases emissions of CO2  in its adjacent 

countries and its own territory. The provided results 

propose that TOP has a positive and substantial 

impact on the emissions of CO2 , thus, TOP had an 

increasing effect on CO2 emissions. The positive 

impact of TOP obtained on the emissions of CO2 is 

in line with work done by Ragoubi and Mighri 

(2021), where they stated that TOP has a positive 

spatial effect on CO2 emissions in 54 middle-income 

countries. Likewise, the study done by Mahmood 

(2020) confirmed the positive spatial impact of TOP 

on environmental degradation in North America.  

 The estimates of FDI for both the direct and 

indirect effects were statistically significant. 

Specifically, a 1% increment in FDI in a focal 

country has the possibility of heightening CO2 

emissions in its own environment by 0.201%, 

whereas a unit increment in FDI in any country in the 

region turns to step up emissions by in the 

neighboring state by 0.094%. The possible 

explanation for the positive effect of FDI on CO2 

emissions could be attributed to the massive mining 

and other production operations by foreign 

corporations. These operations had raised the level of 

environmental degradation in the Sub-Saharan Africa 

region. Generally, FDI has the potential to drive 

economic development in their host country by 

transferring sophisticated technologies which raise 

productivity and increase economic growth. FDI 

introduces new production methods to local 

enterprises and provides labor skills, management 

practices, and new products resulting in more job 

chances for indigenous people. Furthermore, FDI in 

Sub-Saharan Africa has aided in the creation of a 

competitive corporate environment, which has fueled 

the economic expansion in most Sub-Saharan Africa. 

The study done by Mahmood et al. (2020) in North 

Africa collaborates with the result obtained in this 

study, where they stated that FDI has a positive 

spatial impact on CO2 emissions. Likewise, the study 

done by Mahmood and Furqan (2021) collaborates 

these findings, where they stated that FDI has a 

significant spillover effect in Gulf Cooperation 

Council countries. However, the study done by Abdo 

et al. (2020) in Arab countries revealed that even 

though the direct effect of FDI is significant, its 

indirect (spillover) effect is statistically insignificant. 

Similarly,  the results revealed that CO2 

emissions are induced by GDP, with both indirect 

and direct effects being statistically significant and 

positive. The elasticities of GDP for both the direct 

and indirect effects were statistically significant and 

positive at a 5% and 10% level of significance 

respectively. More specifically, a unit gain in GDP 

corresponds to 0.112% in a focal country’s own 

environment, while a 0.077% increase is induced by 

its neighboring countries. A possible reason for the 

positive effects of GDP on CO2emissions could be 

that the Sub-Saharan African countries are still 

relying heavily on conventional fossil fuels for their 

economic development. As a result, CO2 emissions 

resulting from the combustion of oil and coal have 

increased significantly in the region. Based on this 

positive effect of GDP on CO2 emissions, it could be 

concluded that if the Sub-Saharan African countries 

aim to decouple CO2 from economic growth, they 

must modify their energy system to a sustainable and 

clean structure. This observation collaborates with 

the results obtained by Khan and Bin (2020) in the 

Belt and Road Initiative, where they stated a positive 

spillover effect of GDP on CO2 emissions. Likewise, 

the study done by Espoir and Sunge (2021) in Africa 

also observed the significance of the indirect and 

direct impact of GDP on CO2 emissions. 

  Lastly, considering the marginal effects of 

other parameters in the model, both the direct and 

indirect effects of POP were observed to be 

statistically significant and positive, indicating that 

increasing POP turns to have a deteriorating effect on 

the environment. While the elasticity predicted for 

the direct effect of INT was statistically significant 

and negative at a 10% level, unveiling that a 1% 

increase of INT in the local country reduces the 

emissions of CO2 by  0.137%. As result, a country 

with a higher INT is inclined to have fewer CO2 

emissions. The indirect effect of INT was also 
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statistically significant and negative at a 5% 

significant level, thus a 0.055% reduction in CO2 

emissions was observed in a local country as a result 

of a 1% increase of INT in neighboring countries.  

 

Table 6: Decomposition estimates of direct, indirect, and total effects of SDM model 

Variables Direct effects  Indirect effects Total effects 

LnGDP 0.112
a
 0.077

a
 0.189

b
 

LnBMS −0.089
a
 −0.022

b
 −0.111

a
 

LnTOP 0.163
a
 0.035

c
 0.198

a
 

LnFDI 0.201
c
 0.094

b
 0.295

a
 

LnPOP 0.122
b
 0.042

a
 0.164

a
 

LnINT −0.137
c
 −0.055

b
 −0.192

a
 

Note: 
a, b, c

indicates 1%, 5% and 10% statistical significance levels, respectively. 

 

V. CONCLUSION AND POLICIES 

IMPLICATIONS 
 Employing a data set of 29 out of 46 Sub-

Saharan countries from 1995 to 2017, the spatial 

econometric approaches and the extended STIRPAT 

model were used to inquire the effect of biomass 

energy and trade openness on environmental 

pollution. Thus, some important outcomes and 

conclusions based on the aforementioned results and 

discussions were as follows; The Moran’s index and 

the LISA maps for the selected years indicate the 

existence of spatial auto correlation. The findings 

suggest that increasing the usage in biomass energy 

consumption in a focal country turns to reduces the 

country’s own CO2  emissions and also reduces the 

emissions of its adjacent countries. Likewise, 

increasing trade openness in a local country 

correspondingly increases CO2  emissions in its own 

territory and as well increasing the pollution in the 

adjacent countries. Consequently, based on the 

findings obtained during the study, some policy 

implications derived in order to bring the Sub-

Saharan African region onto a neutral CO2  emissions 

paths are as follows: 

1) Governments in Sub-Saharan African should 

enhance their investments in biomass energy 

initiatives, which could include extensive 

research and development. Based on the findings 

of this study, this could aid in the fight against 

environmental issues specifically CO2 related 

pollution. This may be able to attract foreign 

investors through FDI in order to boost biomass 

energy production. Thus, to meet the region’s 

environmental sustainability targets, CO2 

emissions could be reduced by using biomass 

instead of fossil fuels. 

2) In order to completely accomplish the goal of 

the Sub-Saharan African countries in reducing 

CO2  emissions and achieving a carbon-neutral 

region, it is important to optimize, increasing 

energy intensity. Meanwhile, it is critical to 

boost the usage of clean energy through 

changing industrial and international trade 

policies in order to promote the role of the 

structure of energy consumption. 

3) Sub-Saharan Africa could develop appropriate 

policies to optimize energy consumption and 

endeavor to break free from the chains of 

traditional energy consumption as quickly as 

possible by all its countries. When it comes to 

the impact of energy consumption on the 

emissions of CO2, traditional energy 

consumption (coal and oil) is heavy in some 

SSA countries. Thus, Sub-Saharan African 

countries should continue to enhance the share 

of the new energy sources in the energy 

consumption structure, such as natural gas, solar, 

and wind energy. As a result, Sub-Saharan 

African countries should pay close attention to 

the growth of the renewable energy industry, 

implement appropriate preference policies, 

encourage the development of the renewable 

energy industry, and enhance the proportion of 

renewable energy consumption. 

4) By means of cleaning up the Sub-Saharan 

African environment, these countries should 

support ecologically friendly FDI inflow. 

Because biomass energy consumption improves 

the quality of the environment in these states, 

shifting energy consumption from energy mix to 

renewable energy (Biomass) is the best option. 

Thus, the attraction of more environmentally 

friendly FDI and investing in the development of 

human capital is a necessity for the region 

because it would boost the total productivity 

factor and energy efficiency as well.  

5) Sub-Saharan Africa must continually open up its 

trading policies and shift its competitive 

advantage in favor of cleaner production, as well 

as boost inter-country technology collaboration, 

including both emissions and production, in 

order to maintain the emissions of CO2  at a low 

level. Again, to prevent countries from more 

pollution in the future, Sub-Saharan Africa could 
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impose stringent regulations, such as imposing 

more technological procedures, which will allow 

emissions to be suppressed and, ultimately, 

environmental quality to improve. Optimizing 

and readjusting industrial structures, on the other 

hand, are the most vital approaches in reducing 

the emissions of CO2, as successful 

transformation of industrial structures would 

result in a significant reduction in CO2  

emissions.   
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